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For a class of unstable pair interactions in classical continuous systems of iden- 
tical particles the high-temperature thermodynamic behavior is shown to be 
normal by extending low-density theorems for the correlation functions. In an 
example we prove a transition between a translation-invariant phase at high 
temperatures and low densities and a solid with long-range order at low tem- 
peratures. The transition is "catastropic" in the sense that it is accompanied by 
the divergence of thermodynamic quantities. We also exhibit counterexamples of 
unstable interactions in any dimension which do not give rise to a low-tem- 
perature catastrophe. 

KEY WORDS: Continuous system; unstable interaction; cluster expansion; 
crystal. 

1. I N T R O D U C T I O N  

Expansions of thermodynamic quantities in powers of the density or the 
activity provide a powerful tool to study systems of particles on a lattice or 
in the cont inuum. The convergence of such expansions, such as the virial 
and Mayer expansions or the power series of correlation functions, 
indicates the absence of phase transitions and was the subject of many 
rigorous works in the 1960s and 1970s (e.g., refs. 17, 18, 8, 9, 20, 13, 14, 
4, 5, and I0)'. Convergence was shown for stable regular pair interactions 
under  the condit ion that the activity or the density is sufficiently small. 

Stability ensures that the energy of the ground state is an extensive 
quantity,  a condit ion which is not  always satisfied, the most remarkable 
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exceptions being the Coulomb and gravitational interactions. The exten- 
sion of convergence theorems to unstable interactions has long been an 
important task, successfully attacked in several cases (see Brydges 131 for a 
recent review). In this paper Ruelle's treatment 12~ will be extended and 
discussed through examples which include a model of crystallization. 

Crystallization is an everyday phenomenon whose microscopic 
description is very far from being satisfactory. Phrased in terms of statisti- 
cal physics, the problem consists in proving that in continuous space a 
system of particles with translation-invariant interaction energy undergoes 
a phase transition at a positive temperature, during which the invariance 
under translation of the equilibrium state is broken. 

The few rigorous results are valid in low (one or two) dimensions. 
In general, proving that the ground state is periodic (or quasiperiodic) 
is already a hard problem. IJ9~ It is known, due to Mermin 1151 (see also 
Fr6hlich and Pfister ~ that in one- and two-dimensional systems with 
stable regular pair potentials which are smooth outside the origin the 
equilibrium state is translation invariant at any positive temperature. 
The one-dimensional, one-component plasma, when treated classically, is 
in a crystalline state at any positive temperature c~2~ and its quantum 
mechanical ground state is also ordered, t2~ In lattice systems we know 
phase transitions which break translation invariance; the simplest example 
is provided by the antiferromagnetic Ising model. Other, more complicated 
interactions can lead to quasiperiodic order, t~6~ The low-temperature 
order found by Kennedy and Lieb ~1 in the Falicov-Kimball model 
can also be interpreted as a crystalline order. However, to my knowledge, 
there exists no example of a proof that a particle system in continuous 
space exhibits a transition from fluid to an ordered solid at a positive 
temperature. 

The present paper will provide such an example, even though a 
caricatural one. In general, the main difficulties of a rigorous treatment of 
crystallization are in the poor knowledge of the ground state and in dealing 
with the continuous excitations. We circumvent these problems by choos- 
ing an unstable interaction which forces the particles to settle down into 
well-defined relative positions with respect to each other already at a 
positive temperature. The difficulty is then shifted elsewhere: to the proof 
that at high temperatures the system has a normal thermodynamic 
behavior, including the absence of ordering. 

We will study systems of identical particles evolving in the D-dimen- 
sional Euclidean space R ~ and interacting via a classical translation- 
invariant pair interaction: For x i, .vj in R D, 

4~(x,, xj) = ~b.=(-x'j - x,) 
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and 

I~ 
oo if I x l < a  

Cb.~= h i "  if b ~ - e ~ k < l x l < b k + o ~ k ,  k = l , 2 , . . .  (1.1) 

otherwise 

Here a > 0  is the hard-core diameter  and Ft<~D ( /~<0  is allowed). The 
sequence bk is positive, increasing, and tends to infinity, b l > a. The 0tk are 
positive and so determined that  the intervals which appear  in the definition 
of Cb,~ are nonoverlapping.  One may think of Cb.~ as a regularized imita- 
tion of nonregular  oscillating-decaying interactions like, e.g., the R K K Y  
one. 

The family of  interactions for which the phase transition will be shown 
corresponds to D = 1, bk = k, and 

f c k  -v if /t = 1 
cck=]ck'-" if / l < l  (1.2) 

In this formula v > l, and the condit ion to have nonover lapping intervals 
entails a ~< 1 - 2c. We will also suppose 2c < a (so c < 1/4), which simplifies 
the description of the ground states. In both  cases (It = 1 and It < 1) the 
family of  interactions is parametr ized by three continuous parameters  
(a, c, v and a, c, It, resp.), two of which (a and c) are of  less importance.  
The letter q~ will refer to a member  of  this family. (o is manifestly unstable: 
The potential  energy of N particles in the configuration x~ = i, i = l ..... N, is 

g - - I  g g - I  g _ r l  

u(x)N= Z Z E Z ,,,, 
l<. i<j<~N i = l  j = i + l  t l = l  

f 
- - N I n N  if i t = l  

= Et,(N) ~ N 2-, '  (1.3) 
if it < l 

(1 - / t ) ( 2 - - / t )  

The last term gives the leading order in N as N goes to infinity. Thus, the 
stability condition, 

U(X)N>~ - - B N  (1.4) 

with some finite B independent of  N and (x)N, is not fulfilled. Here and 
below we use the shor thand ( x ) u = ( x ~  ..... XN). By cutting windows of  
widths 2~k and permit t ing the at traction to act only at distances which fall 
into these windows we can at will decrease the domain  of the configuration 
space in which the potential  energy is nonextensive. With a suitable tuning 
of the windows--precise ly  as in (1 .2)--we will get a phase transition. The 
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upshot is that in the limit of infinite volume the Gibbs measure of the 
domain of nonextensivity tends to zero at high temperature and to a 
positive value at low temperature. This latter implies a catastrophe in the 
infinite system. Something similar happens in the two-dimensional Yukawa 
gas ~1 (see also ref. 6), but now the catastrophe does not manifest itself in 
a mere collapse. Instead, the particles get stuck in positions of a periodic 
lattice of period 1. This is accompanied by the divergence of thermo- 
dynamic quantities: The free energy per particle goes to - o o ,  the grand- 
canonical potential--and the grand-canonical pressure with i t - - to  + ~ .  
Notice that for a hard-core repulsion and the one-dimensional RKKY 
interaction -cos27tx/[x[ outside the hard core one gets this kind of 
divergence at all temperatures. 

While it is very simple to show that at low temperatures ~ gives rise to 
diverging thermodynamic quantities, the proof of the long-range order is 
more complicated. Also, a direct proof that the pressure remains bounded 
at high temperatures can be done, but showing directly the analyticity, 
translation invariance, and clustering of the correlation functions seems to 
be prohibitive. These properties will follow from our extension of the treat- 
ment of correlation functions via the Kirkwood-Salsburg equation or the 
algebraic method, as described in Ruelle's book. ~2~ The condition of 
stability shall be relaxed. The price to pay is to replace the regularity condi- 
tion by a stronger one [condition (C) below] which may not be satisfied 
at all temperatures. 

The interactions ~bb. ~ emerge as natural examples satisfying (C). 
Indeed, we shall see that for any choice of the sequence bk the c~ k can be 
chosen so that (C) holds true. Now (C) will imply the boundedness of the 
pressure and, for low activities, the expected properties of the correlations. 

All the results remain obviously valid if we define ~b.~ = - I x [ - ~ '  inside 
the windows. Also, the interaction can be made continuous, although with 
unbounded derivative. The one-dimensional example of phase transition 
can somewhat be extended: for instance, we get qualitatively the same 
result if bk is any sequence of integers such that bk+~ --bk is a bounded 
sequence. 

To obtain examples in higher dimension, one has to find bk and ek so 
that (C) holds at small inverse temperatures fl and there is a catastrophe 
at large ft. As will be seen, checking (C) is straightforward; finding the 
ground states or configurations with nonextensive energy is more involved. 
For the natural choice bk = k the suitable c~ k seem not to exist. More artifi- 
cial choices for bk, such as, for example, the kth neighbor distance on a 
lattice, can work. Also, with a nonisotropic interaction, where there are 
attractive windows only at lattice vectors corresponding to some lattice, 
one can easily obtain this kind of phase transition. 
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The paper is organized as follows. Section 2 contains our extension of 
convergence theorems for high temperatures and low activities. We prove 
that the high-temperature thermodynamic behavior of a classical system of 
identical particles in R D is "normal" if the interaction satisfies the following 
condition: 

(C) ~b is a translation- and reflection-invariant pair interaction, 

~ ( x , y ) = ~ ( y - x ) = ~ ( x - y )  

which can be decomposed as @=@, +$2,  where $2 is stable and 

C(fl) = sup I le-P'~L">- 11 exp ~bt (y-x i )  dy < oo 
n . ( x ) . :  U1(x),~ < .:,o I 

for some fl > 0. Here U1 is the potential energy corresponding to ~b~. 

This condition may not be satisfied for all fl, but if it holds for some 
flo>0,  it holds also for fl<flo. If ~b is stable, one can set ~bj = 0  and (C) 
reduces to the regularity condition. We will see that an unstable interaction 
satisfying (C) must contain a hard core: this excludes the instability due to 
~b(0) <0.  We prove that all the results on the correlation functions 
described in Chapter 4 of ref. 20 remain valid if Ruelle's C(fl) and B are 
replaced, respectively, by the C(fl) above and the stability bound of U2, the 
potential energy belonging to ~b 2. Under the additional condition that (C) 
holds with ~b=r the boundedness of the pressure is shown for all 
activities. 

In Section 3 we study the interactions ~bb. ~. We show that for any 
choice of bk, condition (C) can be satisfied if 0ok is sufficiently rapidly 
decaying. The 0c k can even be fixed so that (C) holds for any positive tem- 
perature: this will provide examples of unstable interactions which do not 
give rise to a catastrophe at low temperature. The one-dimensional inter- 
action cp specifying the model of crystallization will be seen to satisfy (C) 
with q~=~bl=cp for f l<(v-1) /2  i f p = l  and for fl<�89 if 
I t <  1. 

In Section 4 we describe the low-temperature properties of the model 
of crystallization. We briefly discuss the ground states, which can be quite 
interesting for ~ < 0, and present a nonrigorous energy-entropy argument 
predicting the phase transition. The low-temperature catastrophe (in the 
sense of the divergence of the specific free energy or the grand-canonical 
pressure) is established for fl > v in the case it = 1 and for fl > (1 - i t ) ( 2 - i t )  
In(1/c) in the case/ t  < 1. The thresholds are the same as those found with 
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the nonrigorous argument. In the same temperature domain we show the 
existence of nondecaying pair correlations. Our proof of ordering is incom- 
plete: We prove that particles are at integer distances, occupying some 
positions of a lattice of period 1 (say, Z), but cannot say anything about 
the arrangement within this lattice. One may expect that for It > 0 and the 
density p < 1, there is phase separation between a period-I lattice and a 
"phase" of density 0, while for I~ < 0 and p < 1 the arrangement is lacunary 
and depends on the density: if p is rational, the particles occupy some 
periodic sublattice; if p is irrational, there is some quasiperiodic order. 

2. CORRELATIONS AND PRESSURE AT 
HIGH TEMPERATURES FOR A CLASS OF 
UNSTABLE INTERACTIONS 

2.1. Definit ions, Notations, and Classical Results 

We consider a collection of identical particles in bounded Lebesgue- 
measurable D-dimensional domains A, interacting via a translation- 
invariant pair interaction ~b. We will extend some results on the infinite- 
volume limit of correlation functions at high temperatures and low 
activities. Recall that the m-point correlation function in the canonical 
ensemble is defined by 

p~t.N(x),,, = N ( N -  1 ) . . .  ( N -  m + I ) XA(X),,, 

~aN-,,, d(Y)u .... exp[ - f lU(  (x)n , k..) (Y)N-m) ] 
X' ~,~ud(y)uexp[ --flU(y)N] (2.1) 

with 

z , , ( x ) , , ,  = z A ( x , )  . .  . z A ( x , , , )  

where XA(X) is the characteristic function of A and 

(2.2) 

U(x)/v= �89 ~ ~b(xj-x;) (2.3) 
i ~ j  

If the xi are all different, PA.N(X)m is the canonical average [over (y)~v] of 

i = l j  

Notice that Zj  6(x-)~i )  is the particle density observable. 
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Denote QA.N and ~,, the canonical and grand-canonical partition 
functions, respectively: 

and 

1 
Q~I,N =-~.. fA N e-Pt:l"~" d(x) N (2.4) 

~.~ = ~ Z'QA,. (2.5) 
n~>0 

where z is the activity or fugacity. (More precisely, z = eP"c/2a ~ where/~c is 
the chemical potential and 2B is the thermal de Broglie wavelength. As 
usual, we consider z instead of/t,, as an independent variable.) The grand- 
canonical quantity corresponding to PA.N is 

p.,(x),,,= ~ z"QA..pj, . , ,(x), . /  ~ z"OA.,, 
n>~O /n>~O 

Z"z ~ 
=~AZ'--I~ . . . . . .  ZAtXh. ~ n! i. d(y),, e -#U"'')'Vl-'')') (2.6) 

n>~0 

where we used that pA,.(X),,, = 0 if m > n. 
The normalization of the correlation function allows pA(X),,, to have a 

finite nonvanishing limit p(x),,, when A increases to R ~ The same is true 
for p..,v(X)., if the limit is performed with the density N/IAI fixed. These 
limits are expected to exist at high temperatures and low densities or 
activities when any "not too strongly" interacting system "resembles" a 
system of free particles. Correlation functions can be used to make precise 
what this resemblence means: 

(i) Existence of the above-mentioned limits, i.e., their independence 
of the way A tends to R ~ 

(ii) Translation invariance of each correlation function, 

p(x~ + x ..... x. ,  + x) = p(xl  ..... x,,,) (2.7) 

for every xi, x ~ R ~ without which the equilibrium state in infinite volume 
would not beunique. 

(iii) Mixing or cluster property, characterizing the asymptotic inde- 
pendence of the particles. In its weakest form this states that for any two 
groups (x), .  and (y) .  of positions 

p(xl  ..... x . , ,  y, ..... y . )  - p(x) . ,  p ( y ) .  --* 0 

if I x i - y j l  --* oo, all i , j  (2.8) 
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There is a series of classic results on lattice and continuous systems 
cited in the Introduction and partly resumed in ref. 20, proving among 
others the above properties. Because of the explicit dependence on z, p~, is 
easier to deal with than PA.N- All the methods consider p.dx),, as a func- 
tion of the activity and extend it to complex values of z. It is then proved, 
using the Kirkwood-Salsburg equation or some kind of cluster expansion, 
that all these functions have a common domain of analyticity in z, depend- 
ing on fl but not on ,4, m, and (x),,. Inside this domain every pA(x),,, 
converges with A tending to R z~ to an analytic function p(x),, which is 
translation invariant, and the different functions are related through the 
mixing property. 

These results are derived for stable regular pair interactions. Stability 
was defined in Eq. (1.4). A translation-invariant pair interaction q~ is called 
regular if it is bounded below and 

fl,'l >, 14'(Y)I dy< ov 

for some finite r. If  q~ is bounded below, it is regular if and only if 

~(//) = f le -p~' ' '~- 11 d.v< oo (2.9) 

for some (and, hence, all) f l>0 .  This can be seen by choosing r so that 
I~(Y)I < 1 for lYl > r. For stable regular pair interactions the analyticity of 
the correlation functions and properties (i)-(iii) are shown for complex 
values of z in the disk 

I=1 < (e -'p8 + ' C(f l ) ) - '  (2.]0) 

(see ref. 20). Notice that with increasing fl the domain of analyticity 
diminishes but never disappears. 

2.2. Corre lat ion Funct ions for Unstable  Interact ions 

Extensions of the above results to unstable interactions have been 
motivated mainly by the interest in systems of charged particles (reviewed 
in ref. 3). The technique is much more involved than ours; yet, it does not 
seem to be adapted to deal with the "infrared" instability characterizing 
the interactions (1.1). The following theorem offers an extension to this 
direction. 
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T h e o r e m  1. Let ~b be a pair interaction satisfying condition (C) at 
a given f l > 0 ,  B a real constant defined through Uz(x),, >1 --Bn, and 

D p =  {z~C: [z[ < ( e  2pa+' C(fl)) -1} (2.11) 

For every bounded Lebesgue measurable A c R ~ SA(Z) has no zeros in D a 
and for every positive integer m and (x),, ~ R ''D, pA(X),, is an analytic func- 
tion of z in D#. Now, 

p(x),, ,= lim pA(X)m 
A ~ R o 

exists, it is analytic inside Dp, and it is translation invariant; in particular, 
p(x)] =-p(x]) is constant. Mixing holds in the form (2.8). 

Condition (C) has several interesting implications. 

1. Clearly, C(fl) < 0o implies C'(fl) < ~ .  Therefore, if ~b is bounded 
below, it is regular. 

2. If C(y )<  0o for some y > 0 ,  C(fl)< ~ for any f l<y .  To see this, 
notice that [e-/J~(-")- 11 increases with increasing fl; therefore, with 

Wl(y, (x),,)= ~. ~)l(Y-Xi) (2.12) 
i = l  

one obtains 

f I e-p~(' '~- i I e-I-v, ,. -, ,, dy 

= fw, >o ]e-fl4'(-")-- 1[ e -pw' dy + fw, ~<o ]e-fl4'(:" - 1[ e -flwl dy 

<<.f ]e-~'*'Y'-l[dy+f ]e-~'~ (2.13) 
I ' l :  I > 0 | 'VI ~ 0 

Taking the supremum, we get C(fl)~ 2C(y). In fact, C(fl)-~ 0 as fl-~ 0. If 
~, <~0 (outside, perhaps, a hard core), the integral for W , > 0  can be 
dropped, implying that C(fl) is a monotonically increasing function of ft. 

3. If ~ is stable, one can set ~l = 0  and (C) reduces to the regularity 
condition. If ~ is unstable and satisfies the condition, it must have a hard 
core. More precisely, the following holds. 

P r o p o s i t i o n  1. Let ~ satisfy (C) and suppose there exists an open 
set V c R  D and e l , e 2 > 0  such that ~ ( x ) ~ - e l ,  ]~(x)] ~e2 i f x E  V. Then 
q~l(x) = c~ [and hence ~(x) = ~ ]  if ]x] <el for some a > 0 .  
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Proof. Assume that  the conditions of  the proposi t ion hold true, yet 
~b~ has no hard core. Then for any 11 > 0  there is an infinite set Xq c R D 
such that  [ x [ < q  for x~X, i  and ~ b l ( x - - y ) < a z  for x , y ~ X q .  Choose an 
open set V o c V  with dist(V o , W ) > r / o ;  such an r / o>0  exists. Let 
(x),, c )(,i o. Then U~(x),, < oo and y -  x; ~ V for y ~ V o. It follows that  

a,, = f le-/~*' -'') - I I e -/~'v' "~"'"' dy 

~> fv0 [ e -P~ l - " )  l[ e -pw'~y''''~'I dy 

/> IV o[ e "~' min{e p~-' - 1, 1 - e -tJ~:} (2.14) 

so the sequence {a,,} is unbounded for any f l > 0 ,  contradicting (C). II 

Proof of  Theorem 2. We use the algebraic method of cluster expan- 
sion as described in ref. 20. For  definitions and the properties of  the under- 
lying algebra d of  function sequences the reader is referred to that  book.  

The starting point is to rewrite PA in the form of a power series in z: 

'~' Z n 

p.~(x),,=z"'z~l(x), , ~ ~?. f d(y),,ZA(y),,~L,.),,,(y),, (2.15) 
n ~ O  " 

where 

r = ((e-PV) -I * DL,-),,,e-PU)(Y),, (2.16) 

Here �9 is the multiplication and D~.,%, is the derivation in d ,  

e-~U = (e-PU~"l"),, >~ o (2.17) 

is the sequence of Bol tzmann factors and (e - p U ) -  ~ is its inverse in d .  The 
zeroth term of the sum in (2.15) is (~.,.I,,,)o = e -pU~')'. One can write e -pt:  
and its inverse as 

e - P U =  Exp u, (e-P~)  - l  = E x p ( - u )  (2.18) 

where Exp is the exponential  in ~r and u =  (u(x),,),,>_.o is the sequence of 
Ursell functions. ~, is the same as ~b in ref. 20. 

If  (x)m is an illicit configuration, i.e., U(x),, = oo, then, according to 
Eq. (2.6), p.dx),, =0 .  We will show that  under condit ion (C), 

~,(x), , ,  = f d(y),  I~.,-~,,,(Y),,[ 

<<.,1! C(fl)" exp[ - f lU,(x) , ,  + (2fiB + 1 )(m + n - 1 )] (2.19) 
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for n~>0. m~> 1, and any admissible configuration (x), ,  [i.e., such that 
Ul(x),,, < oz ]. 

Let us suppose for the momen t  that  (2.19) holds true. Then 

,~=o ~ f d(Y),,ZA(Y),, ~bc,-,,,,(Y),, 

Izl" 
<~ - -  ~ u , , ( x ) . ,  

. = 0  n !  

< e-#U,,.,%,e,2Ps+ ,I ,  . . . .  I ,  ~ Izl" c(#)" e '"2as+ ' 
n=O 

<-.e-ZU'">'e~2Zn+'~l"'-l~(1-1zl C(fl) eZl*n+l) -I (2.20) 

if z eDp. So the power  series of  pA(x),,, is absolutely convergent,  hence 
p.~(x),,, is an analytic function of z in Dp. Moreover ,  for all m >~ 1, 

p(x),, = ,  d (y ) ,  r = z"'r (2.21) 

is also absolutely convergent and defines an analytic funtion of z in D a. It 
is not difficult to see that p = l imA_,, ,pa.  Indeed. if (x ) , , c  A. 

~ z " f l  
p(x),,,--pA(x),.=z"' -- d(y ) .  Oc.-~,,,(Y). (2.22) 

n = I 1l! Ac),, 

The series is absolutely convergent,  

Ip(x),,,-pA(x),,[ <~ Izl"' ~'. Izl'___~'[ d(y), I~',.,-,,,,(Y),I (2.23) 
, , = 1  r t[  -I{Ac�91 

On the right side of  this inequality each term goes monotonical ly  to zero 
with A going, to R D through an increasing sequence, so the sum goes to 
zero as well. 

Each p(x),, is translation invariant; in particular,  p (x l ) -p~ ,  the 
density, which depends analytically on z in Dp. Translat ion invariance is 
inherited from the Bol tzmann factors and Ursell functions via 

~.,., + .......... ., +.,.(y), = ~O,.,.),,,(y),, (2.24) 
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Now we turn to the proof of the bound (2.19). Denote 

Wk((X) .... ( y ) , ) =  ~ ~. ekk(yj--X,), k = l ,  2 
i ~ l  j = l  

W =  WI + W2 

and 

K(x, ( y ) . ) =  f i  (e - p ~ - ' ' - ' ) -  1) 
i = l  

q~ satisfies the recurrence relation 

(2.25) 

(2.26) 

~bx( Y) =e  -/m'(x"x') ~'. K(xi,  S) ~b x, us( Y \ S )  (2.27) 
S = Y  

[cf. Eq. (4.26) in ref. 20]. Here X =  (x) .... Y =  (y),,, xi is any element of X, 
and X~=X\{xg} .  Both S and Y \ S  are subsequences of Y. Notice that 
t~(.,.),,,(y), is separately symmetric in the m, resp., n variables (x),, and (y),,, 
therefore the notation X ;u  S is unambiguous. By integration over (y),,, 
from Eq. (2.27) one obtains 

n! 
~P"(x)"'<~e-PW~"x') ~" k ! ( n - k ) !  

k = 0  

x Id (Y )k  IK(x~, (Y)k)l 7",,--k(Xiw(Y)k) (2.28) 

As in ref. 20, we proceed by induction on m + n. Let first m = 1, n = 0. 
Now, To(Xl)= (~k,.,)o=exp[--flU(Xl)] = 1, so (2.19) holds for r e + n =  1. 
Applying the induction hypothesis to the right side of the inequality (2.28), 
we get 

T,(x),,, <~ 17! C(fl)"e-/m~.,-,.x,) et2.aB+ l ) l m + , , - 2 )  C( fl ) ~ k 

k =o k! 

x f IK(xi, (Y)k)] e-lm'~x'~' "~*~ d(y)k 

= n! C( fl)" e -pt v ' ' ' ' ' +  w'-~"" x" ] e'2lm + l )'"' + " -  2) I~(x),,, 
k=ok! C(fl) k (2.29) 

where 

Ik(X)" = f d(y)k [K(xi, (Y)k)l e -p[ u, ly)~.+ w,(x,( ,,)k)] (2.30) 
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Notice that 

U 2 ( x ) m  = 1 ~, W2(,x.i, Xi ) >1 - B m  (2.31) 
i = 1  

so W2(xg, X~)>1 --2B for suitably chosen i. Therefore Eq. (2.19) is verified, 
provided that 

Ik(x),,, <~ C(fl) k (2.32) 

for all k, m, i and all admissible (x),,. Now Ik(x),, can be written 

Ik(x),,,= ~ d(y)k,~=~.= [exp[-fl~b()5.) ] - II 

{[5 1}) xexp  - f l  ~ , ( y j - x } ) +  Y'. q~t(Yj-Yl) (2.33) 
i I = j +  I 

where x'l = x / -  xi. If Ul(x),,, < ~ ,  then UI(X') = UI(X~) < ~ .  On the other 
hand, the integrand vanishes if U~(y)k = o0 or W~(X', (Y)k)= ~ ,  so that 

Ik(x),, ,= f d(y)k I~ ( l e x p [ - f l ~ b ( 3 ) ) ] -  1t 
UI X ; ~ ( v  k)<Oc j = l  

{[5 1}) xexp  - f l  ~ , ( y j - x } ) +  ~ d~()~-y,)  (2.34) 
i I = j +  1 

which is clearly majorized by C(fl) k. 
For  m = 1 the bound (2.19) can be improved by a factor e -2tin because 

U(x)~ = 0  and the first exponential factor on the right of Eq. (2.29) can be 
dropped. So we get 

~,,( x l ) <~ 17! e-Z/is(C(fl) e 2/~ + i ),, (2.35) 

It remains to prove the cluster property (2.8). Here we fully rely upon 
ref. 20. The sequence p=(p(x),,,),,>~o of correlation functions (po = 1) can 
be written p = Exp p r, where p r is the sequence of truncated correlations. 
These are also invariant under translations. Therefore pr depends only on 
the coordinate differences x j - x ~ .  A sufficient condition to get (2.8) is that 
for any m and any i~ {2 ..... m}, p r ( x ) , .  ~ 0 with I xe -x~ l  --, oo. This clearly 
holds if 

f dxz. . ,  dx,, IpT(x),,,I < (2.36) 

822/82/5-6-22 
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To obtain an expression for p r  we return to Eq. (2.21). Since ~k~)= 1, intro- 
ducing the cluster function r of  ~:,  we have ~b-- = Exp r  and 

p r(x) , ,  = Z"'r (2.37) 

This r is the same as Ruelle's. Referring to ref. 20 for the intermediate 
steps, one finally obtains, using the bound (2.35), 

f dx2.-, dx., lr 

< ~. l~l"n~_ '/"+"'- ,(x,) 
l l = O  

~<(m-- I)! e --'#B (C(fl) eZ'~B+l)"'-I 
(1 --Izl  C(fl) e2flB+ 1) "'  (2.38) 

which is just Eq. (4.41) of  ref. 20 with a different meaning of B and C(fl). 
This finishes the proof. 1 

2.3. Free Energy and Pressure at High Temperatures 

We expect that  under condition (C) the pressure 

PA = (fl [A[) -~ In ~A (2.39) 

and the free energy per particle 

fA,N = - ( f i N ) - t  In QA,N (2.40) 

remain bounded as the volume [AI tends to infinity, and the pressure 
depends analytically on z in the disk D/j. Both can be show under some 
additional hypotheses. 

Theorem2.  (i) If  C (2 f l )<ov  and zeDp,  the grand-canonical  
pressure Pl,(fl, z) converges on Van Hove sequences and the limit is an 
analytic function of z in Dp. 

(ii) If  C ( f l ) < ~  holds with a r such that  qil(x)~<0 for Ix[ suf- 
ficiently large, and z E Dp, PA(fl, z) converges on Van Hove sequences and 
the limit is an analytic function of z in D/j. 

(iii) If  C(fl) < ov holds with r = r and r  < - e  < 0 on some open 
set, then for any bounded Lebesgue-measurable A 

fl..flx,N>~ln(N/lA[) -- 1 - m a x {  l, In C(fl) Pep} (2.41) 
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and for any real, positive z 

p,(fl, z) <~ z max{e, C(fl) Pep} (2.42) 

Here Pep is the close-packing density. 

Proof. (i)-(ii) The pressure p,~ is related to the one-point distribution 
function through the equation 

flea = IA[ -~ In S A = 7 [A[ -~ dx, pA(x,) (2.43) 

Suppose that 

Then PA converges to 

lira IAI-I dxlp~,(x,)=p, (2.44) 

which depends analytically on z in Dp. We will prove Eq. (2.44) for A 
going to infinity in Van Hove sense. 

Let (x),,,aA and define 

A T,, (x),,, = d(y),, I g',,-I,,,(y),,I 
A c )n 

(2.46) 

This quantity satisfies the analog of the inequality (2.28) with the difference 
that all the integrals are restricted to A". The analog of (2.19) will also hold 
if C(fi) is replaced by some C(.,.i,,,(fl) chosen so that the analog of I,,(x),,, 

l,,(X)m = d(y),, IK(x .... (Y),,)I 
A, ' )n  

xexp[--f l (Ul(y) , ,+ Wl((x) .... i, (Y),,))] 
A Ii 

,< C,,.i.,(fl) 

for all 17/> 0 find all admissible (x),, c A. A suitable choice is 

C~l,.i,,,(fl) =max  sup fAdy lexp[ - f l (~(y-x,)]  - II 
y ~ A c : U l ( Y i ,  y ) <  ~ c 

xexp{-- f l (~iqb ' (Y--XJ '+ ~ 

(2.47) 

(2.48) 

p=f l - i  f~ __Pl (2.45) 
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where X'i ,  Y were introduced in Eq. (2.27). With this we get for (x),,, c A  
[cf. Eq. (2.23)] 

]Z[ m + n  

Ip(X),.--PA(X)ml <~ Y. ,7----'~. ~e:,(X)., 
n =  [ 

Izl "'+ 'c:.,.~.,(~) exp[ -- f lU,(x) . ,  + 2fln(m - tim., ) + m] 
<~ 

1 - -  [z[ ~' e2#B + ' Cc_,.I,,,(P) 
(2.49) 

For  z6D/~ the upper bound is finite because Cf!,.),,,(fl)~<C(fl). The left 
member goes to zero with A increasing and tending to R ~ This is not 
necessarily true for the upper bound, al though 

C A C A. for A ~ A' (x) , .  ~'~ Ix),,, 

is easily seen. 
First we prove (i). Suppose C(2fl) < oo. Using the Schwarz inequality, 

A C~...~,,,(2fl) <~ C(2fl) (2.50) 

and 

le -/*r ...... I -  11 ~< l e - 2 / ~ ' * ~  11 (2.51 ) 

we obtain 

C,A,.,.,(fl) <<. max ( C ( 2 f l ) f  dy lexp[ - 2 f l q ~ ( y - x ; ) ]  - II 
I < ~ i ~ m  \ aAC 

which goes to zero if A --* II D. For  m = 1 somewhat more holds true. In this 
case (2.52) reads 

E ]: C.',!(fl) <<. C(2fl) le -'-p*' ....... ' -  I I dy (2.53) 
ff 

Due to the invariance of  ~b under translations, the upper bound goes to 
zero if dist(x, A c) ~ oo. Thus, for any e > 0 there is a finite r such that 
C~(fl) < e if dist(x, A") >1 r. Let 

O~(A) = { x ~ A: dist(x, A") ~<r} (2.54) 
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Then 

[A[- '  IA [I)A(X)--pl[ dx<~ [zl2e ( [0r(A)['~ (2.55) 
1 - [z[ C(fl) e 2 p B + I  e + C(fl) ----]--~] 

If A goes to infinity on a Van Hove sequence, IOr(A)I/IAI--' 0 by definition 
and, e being arbitrary, this proves the assertion. 

Let us turn to the proof  of (ii). Assume that ~l(x)~<0 if Ixl > R  for 
some finite R. We show, as before, that C A ---, 0 if dist(x, A c) ~ oo (here and x 

below we do not indicate the dependence on fl, which is fixed). C~ is 
monotonically decreasing with increasing A; suppose it converges to some 
C~ > 0 as A increases to R ~ Then there exists a bounded A~ containing 
x and satisfying 

C~' ~< (5/4) C~ 

Also, one can find two bounded sets, Az c A3 c R ~  A4 with A~ ~ A2 and 
dist(A2, A~) > R, and coordinates (y"~ ..... y~,,) = A~+ ]\A; with U~(y~),,, < oo 
(i = 1, 3) such that 

C~= dylexp[-flqb(y-x)]-llexp -fl  qb,(y--y~) >-~C:,. 
i +  I \ A i  j = 1 

(2.56) 

for i = 1, 3. Now 

5_c.oo~ x ~" "-'.,. >t f,,~. dy lexp[-flq~(Y-X)]- l[ 

xexp[ - f l (  ~ r ~ $,(y-y},)]  
V=l  j=] 

4 cO (2.57) /> C~ + C3 > ~ C,. 

F rom this contradiction we conclude that C~ ~ 0 as dist(x, A c) ~ oo. The 
proof  can be completed as in case (i). 

(iii) The proof  consists of two steps. First, using that C(fl)< oo holds 
with ~b = $~, one shows that 

IAI "~,1 C(fl) k 
Q"'" ~< ~ k'-2'= o ~ QA., - - k - - I  (2.58) 

Second, from this inequality together with the fact that ~b has a hard core 
(cf. Proposit ion 1) one deduces by induction that 

QA,, < ~  [max{e,  C(fl) p~p} ]" (2.59) 
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Clearly, this implies the result on fA.g and PA- The proof of (2.58) is 
analogous to that of Eq. (2.19): 

~A" d(y),, e -pv(yI" 

(n - -  1 e -#4,0'.- >'i1) e-#VO')"- l 

= ~m dy, ~, IAmdYK(y , ,  Y)IA,_,_,y,d((y),,_,\Y)e -'uO')"-. 
Y = ( ) '  )n - I 

f A dyn n (n-- 1)! f A d(x)"-k e-'V(")"-*-t 
- , , - , . - ,  - '  

k = O  

x r d(.v)k K(y, ,  (Y)k) e-a(uI>')k+ w,.,.),,_k_t. ,,)~., 
J, i k  

,,- l ( n  - 1 )! f 
~< [AI ~ C(fl)~ JA d(x),,_k_ 1 e -avlxl"-k-' (2.60) 

k = o k! (~(-)<-~ I )! ,,-,.-, 

In the inequality we used the bound (2.32), which holds because now 
U= U), W= W~. Dividing by n!, we obtain (2.58). To prove (2.59) by 
induction, suppose that for k ~< n - 1, 

aA.k < (q IAI )k/k! (2.61) 

where 

q =max{e, C(]~) pep} 

Now 

QA., < IAI "~ ' C(fl)k (q Ial) " - k - '  

n k----o k! ( n - k -  1)! 
_ IA___[ (C( /~)  + q  I A I ) " - '  ~ ~  
- 17! 

(2.62) 

(q IAI)" 
n! 

(2.63) 

if 

1 C( f l )y ' - '  ~<q + q - ~ j  (2.64) 

Because of the hard core, it suffices to show (2.64) for n<~XA = IAI Pep- 
Thus, we have to verify that 

( l +C(fl) PcP~""<.q (2.65) 
qXA / 



Low-Density Expansion for Unstable Interactions 1559 

However, (l + x - ~ ) " < e  for x > 0 ,  so (2.65) holds if 

e c(fl)pcp/q <~ q (2.66) 

which is true for the choice (2.62). This closes the proof of the theorem. 1 

3. THE INTERACTIONS @n,o 

Let us check condition (C) on the interactions ~bb,~; cf. Eq.(1.1). 
Choose q~2=0, so q~=q~,=~bb.~. Let (x),, be any admissible set, i.e., 
Ix,-.,91 >~a for any iv~ j. Define 

Ao= {yeRO: W(y, (x),,)=0} 

Bo= {yeRV: lYl <a} 

A, = { y e R ~  max{k: I lY-X,.I-bkl  < %  for some i} =n},  

B,,={y~R ~ I lYl-b,,I <~,,}, n>~l 

n>~ 1 
(3.1) 

Notice that A,, = A,,(x),, and B,, is independent of (x),,,. Then 

I dy lexp[-fl@(y)]- ll exp[ - f l  ~ ~b(y-x,)]  
i = ,  

~< ~. exp[f l  ~. Nk(a) bk" 1 1,4 d y [ e x p [ - f l ~ b ( y ) ] - l [  
n ~ O  k =  I n 

n~O k =  1 

x(lA,,c~Bo[ + ~, [ e x p ( f l b S ) - l ]  IA,,nBI[) 
I = 1  

(3.2) 

where IX[ denotes the Lebesgue measure of X c R  D. Here Nk(a) is the 
maximum number of hard balls of diameter a which can be placed with the 
centers in a spherical layer of central radius bk and width 2~k. It is propor- 
tional to the surface area of a sphere of radius bk, so there is some c, > 0 
such that 

Nk(a) <~ Cl b~- 1 (3.3) 

In one dimension we have equality with c~ = 2. 
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We also need an upper bound to IA. c~ B~[, independent of (x).,. Such 
a bound exists because of the condition Ix , -x  A >1 a for i~ j .  First, there is 
a c2 > 0 such that 

[AonBtl<~lBll<<.c,_o~tb~ -I for 1>~1 (3.4) 

Second, there is a c 3 > 0 such that for any n >/1 

[A,, n Bo[ ~< c3o~nb, D -  1 (3.5) 

This bound is obtained by observing that for 

b . -  2 a -  ct,, < dist(xi, Bo) < b. + o:,, (3.6) 

one has 

I{y~Bo:  I l y - x , I - b . I  < o~,,} 1 ~ c%oe,, (3.7) 

and the maximum number of hard spheres at a suitable distance (3.6) from 
Bo is less than ,,-o-~ Third, there is a Ca > 0 such that for any n 1> 1, 1>~ 1, C3D n . 

IA,,c~BII <~min{czo~,b~-', c4~,,b~(bt+b,,) ~ } (3.8) 

The first member on the right is the upper bound (3.4) to IB~[. The second 
is the product of 

I { y ~ B z : l l y - x i l - b , , I  < ~,,} I <~c': .b~- '  (3.9) 

(here i is fixed) with the largest number of hard balls at a suitable distance 
from B~, which is bounded by some multiple of b~(b~+ b,,) D- ~. Substituting 
Eqs. (3.3)-(3.5) and (3.8) into Eq. (3.2) and taking the supremum over 
(x).,, 

C(fl) ~< Co + c2 ~ [ exp( f lbS)  - 1 ] ~/b/~ 
/=1 

"~ ~ [exp(]]CI ~ b D - I - P ) ]  
n=l k=l 
{ " 

x c3e,,b,, D-~ +c,o~,,b~ -~ y" [ e x p ( f l b J ) -  1] b? 

+c2 ~ [ e x p ( f l b J - 1 ] e , b ~  -1} (3.10) 
I=n+ 1 

where Co = IBol and c5=2 D- lc 4. 
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It is obvious that for any positive sequence b,, tending monotonical ly 
to infinity one can choose % sufficiently rapidly decaying so that the upper 
bound is convergent for all fl < o9, hence C(fl)< oo for all f l <  o9. Some of 
these interactions are manifestly unstable. For  instance, b,, = n and it <~ 1 
defines an unstable interaction in any dimension, as it is seen from 
Eq. (1.3). Thus, we have examples of unstable interactions which do not 
lead to a catastrophe at low temperatures. 

For  D = 1 and b,, =n we can replace Eq. (3.8) by the stronger 

IA,, c~ B/I ~< min{ 40cl, 8a,,} (3.11 ) 

With this the inequality (3.10) reads 

C(fl)<~Co+C,_ ~ [ e x p ( f l , - " ) - l ]  o~,+ ~. [exp  (2fl ~" k - " ) ]  
1 = ]  n = l  k = l  

x {c3~xt,+80 % ~ [ e x p ( f l l - " ) - - l ]  + 4  
/ =  1 I =  n +  1 

) 
[ e x p ( f l l - ' ) -  1] ~/~ 

(3.12) 

If p = 1, there is a K > 0 such that 

C(fl)<~K a l l - l +  n "-a ~,,ln n + all  - l  (3.13) 
\ 1 = 1  n = l  / = n + l  

Let c~,, = cn -"  with v > 1, as in Eq. (1.2). The first sum is convergent; there- 
fore C(fl) < oo if 

~ n 2a-" In n < o9 (3.14) 
n =  I 

and this holds for f l <  � 89  I). I f ~ , = o ( n  -v) for any v >  I, then C(fl) < o9 
for all fl < o9. 

If 0 ~</t < I, there is some K > O  such that 

(t t ( t ) )  C ( f l ) ~ K  09+ e tza/(~-'ll' '-" o~,n+ oc I (3.15) 
/ 1 n = l  / = n + l  

Let ~,, = c "~-" "(with c < 1 ) as in Eq. (1.2). The first sum is convergent; there- 
fore C(fl) < ~ if 

nexp  + l n c  n 1-~' <oo  (3.16) 
,,= ] I - p  

which holds for f l <  �89 - p )  In c -I .  
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Finally, let/~ < 0. There is a K > 0 such that  

C(17) <...K e##-"r e t2pl~l -j'l]"'-" ~x,,neP"-" + 
/ 1 n = l  

SOt(} 

/ = n  + 1 

(3.17) 

Choose a , , = c  "~-', c <  1. The first sum is convergent for all fl, so C(fl)< 
if 

{ [(  2fl +lnc) nl-"]}nexp(fln-~')<oo (3.18) exp 1 - / x  

which, again, holds for fl < �89 1 - / x )  In c-~. For  every/x  < 1, ~,, = r"" with 
r <  1 and v >  1 -It  implies C(fl) < oo for all 17< oo. 

4. A MODEL OF CRYSTALLIZATION 

4.1. Ground States 

We are interested in the ground states of  a system of N particles on a 
one-dimensional interval A of length L interacting via the pair  interaction 
q~ defined in the Introduction.  We confine ourselves to a qualitative discus- 
sion. 

To  describe the ground states it is useful to introduce the following 
notation: Given the sequences bk and 0Ok as specified after Eq. (1.1), for a 
distance r, 

r ,~bk  if bk--txk<r<bkWO~k (4.1) 

In particular, if bk = k, we say that  r is an approximate  integer if the above 
holds. 

A configuration (X)N with every xj in A is an N-particle ground state 
if 

U(X)N=min U(Y)N 
Yi  E i l  

The easiest case is 0 < It ~< 1. If p = NIL ~< 1, the ground states of  cp are 
the configurations 

xl < "" <xN, x j - -x i~j - - i  ( j > i )  (4.2) 
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and their permutations. They are independent of the density and can be 
called single or pure crystals of period (density) 1. The formula (1.3) gives 
the energy of such configurations. If p > 1, no ground state can be a pure 
crystal. If p ~<La-~_J, any ground state is formed by l-p-1 intercalated pure 
crystals of period 1 (L-_J and [-.-1 mean rounding downward and upward, 
respectively). If a -1 is not an integer, for p e ( L a - l / ,  a - ' )  there may be a 
competition among different "phase-separated" configurations. To mini- 
mize the energy, one or more chains of particles at approximate integer dis- 
tances have to be present, mixed up with a disordered (fluid) component 
of density larger than p. The order within the chains may depend sen- 
sitively on the Diophantine properties of p, and we do not attempt any 
detailed discussion here. 

I f  lt = 0, any (x)N with [Xj--Xil ~ integer for each pair i, j is a ground 
state. The energy is still given by Eq. (1.3), that is, E~,(N)= - N ( N - 1 ) / 2 .  

The case p < 0 is qualitatively different. Consider only p ~< 1. The inter- 
action is actually repulsive; the particles tend to increase their mutual 
distances. As a result, in ground states 

max x / -  min x i ~ I_L_] 

and the other positions depend on the density. In finite volumes it is dif- 
ficult to give them precisely. It surely holds that I..9-x,I ~ integer. Fixing 
one coordinate to be 0 and letting A tend to R, N--* oo with N I L  = p, one 
may ask what can be a limit of finite-volume ground states. The presumably  
correct answer is that for p = p/q, where p and q are relatively primes, one 
obtains a periodic subset of Z of period length q, while for irrational p the 
result is some quasiperiodic subset of Z. For/z  < 0 the formula (1.3) gives 
an upper bound to the ground-state energy. 

4.2. A Nonrigorous Energy-Entropy Argument  

Let us choose p ~< 1 and compare the free energy of two restricted 
(microcanonical) ensembles of given energy: The first is the set of con- 
figurations (4.2), characteristic of a crystal, the second is the set of con- 
figurations of "free" particles [ U(x)iv = 0], characteristic of the fluid phase. 

The energy in the first ensemble is given by Eq. (1.3). The volume in 
configuration space associated with (4.2) is bounded below by c~ and 
above by 

L(2~1)...  (2~N_ 1) 

Therefore, the specific free energy of the first restricted ensemble is 
asymptotically 
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I ( f l - ' v - -  1) InN 

fl(/'t) ~ [ ( f l - ' ( ( N )  ln c - '  I ~ N 1 -It 
(1 - p ) ( 2 - / t i  / 

if ll = 1 

if p < l  
(4.3) 

with ( 2 - p ) - I  ~<((N) ~< 1. 
Particle coordinates xl < .-. <xN yielding U(X)N=O Occupy in A N a 

volume of the order of (coN)U/N], where Co is some bounded function 
of N. [Indeed, this volume can be estimated by neglecting the intervals 
of lengths 2%; then we get the partition function of a system of hard 
rods of length a (Tonks gas, 12~) which is of the proposed form with Co = 
p - 1 - a  + a/N. The actual Co is somewhat smaller.] Therefore the specific 
free energy of the second restricted ensemble is f2 = O( 1 ) for all ft. At high 
temperatures, f2 <f~ ,  implying that the system is in a fluid phase. At 
fl > fl,, where 

{~(, if p = l  
f l '=  1 - 1 0 ( 2 - l t ) I n c  -I  if l t < l  (4.4) 

f~ becomes smaller than f2, indicating a transition to the solid phase. 

4.3. Divergence of Thermodynamic Quanti t ies 

Let A denote the interval [0, L]. Recall that a is the length of the hard 
rods, so a-~ is the close packing density. 

P r o p o s i t i o n  2. For any p < a-1 and any fl > fl,, the free energy per 
particle f A.u ~ - ~  as N, L --* oo, N/L  = p. 

Proof. First, let p < 1. The right side of Eq. (4.3) [with ((N) = 1 ] is 
the asymptotically leading order of a rigorous upper bound to f,f.u, and 
this implies the result. 

If 1 ~< p < a-~, one can proceed as follows. Choose e > 0 such that 
p(a + e) < 1. Let 

l l - p ( a + e ) ]  (4.5) K =  L 1 - - a - e  

A lower bound to the partition function QA.N can be obtained by allowing 

X i ~ [ i , i + O L K )  , i = 1 , 2  ..... K 
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and placing XK+ 1 ..... Xu between K + t x  K and L. For these configurations 
U( x )N<E ~ , (K)  and the occupied volume in the configuration space is 

K ~OtK(e--tlL) N-K,  where PIL O(L- l ) .  This yields 

QA.,v >1 o~e  -PE,'~ m(e - -  q l.) N -  K (4.6) 

and 

f~,.u ~< (1 -- f l , / f l )  E~ , iK) /K+ O(1) (4.7) 

Because of K =  O(N) ,  the result follows again. I 

From the above proposition we immediately get the following result. 

C o r o l l a r y .  For fl > fl, and any z > 0, the grand-canonical pressure 
pA"--~O'3 as L - *  oo. 

As will be seen later, the limiting state of the canonical ensemble is 
highly singular, namely, the correlation functions exist only in distribution 
sense. Under such circumstances one cannot expect equivalence of the 
canonical and grand-canonical ensembles. For example, we do not expect 
that the canonical pressure 

P,,.,v = ( f lQA.,V)- '  OQ,,.,v _ Of,,.N (4.8) 
OL Op - t 

diverges for It > 0 and p < 1 as N, L ~ ~ ,  N I L  = p. However, for It < 0 and 
also for/~ > 0 and p/> 1, PA.N may well tend to infinity with the increasing 
volume. This can be better seen from the following formula for P,J.,v. 
Employing a rigid-wall boundary condition and using the translation and 
permutation invariance of U(xl  ..... X,v), we find 

oO,~.u 1 f: fo" OL - ( N -  1)! dXl ... dx ,v_ l  e -au~'~ ........ ~'-~'L~=Q,I.,vpA.N(L) 

(4.9) 

Here p,l.,v(X) is the one-point correlation (distribution) function in the 
canonical description, which can be interpreted as the (unnormalized) 
probability dgnsity for any particle to have position x, irrespective of the 
positions of the remaining particles. Because of 

U ( L -  x I ..... L -  xN) = U(Xl ..... XN) (4.10) 

pA.,v(L) =RA,N(0), and the pressure can be written as 

P.,I,N=fl IpA,N(O):fl--lpA N(L)  = I --1 . i f l  [R,,t .N(O)+p.,t ,N(L)] (4.11) 
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This expression is generally valid in one dimension, under the symmetry 
conditions on U(x)~v. To get (4.9), we suppose also that the discontinuities 
of the n-particle interactions (which depend on n - 1 distances) are in a set 
of zero Lebesgue measure in R "-~. If there is no interaction, pa.N(x)=p 
independent of x, and one obtains the ideal gas law. In the actual model 
if, e.g., L ~ ~ through integer values and N > L or if p < 0, the effective 
repulsion among the particles can make p~.N(x) tend to o~ at x = 0, L, 
implying the divergence of PA.N. 

4.4. Nondecaying Pair Correlations 

Below we show the existence of nondecaying pair correlations at 
f l>f l , .  We work in the canonical ensemble, use a rigid-wall boundary 
condition, and, for convenience, restrict the discussion to densities p ~< 1. 

The probability of an event A with support in A N is 

P A.u(A)= IA e-Ptl~")N d(x)N/IAue-Ptlc"lU d(x)N (4.12) 

Because U(X)N is a symmetric function o fx t  ..... xN, PA.u is invariant under 
permutations: Let n be any permutation of { 1 ..... N}  and 

nA = {(x,~ll,..., x,~m): (x)u~  A} (4.13) 

Then 

PA,lv(nA) = PA.~v(A) 

For any real x and K > 0  define 

(4.14) 

Sx(x)= U {y~R:  ly-xl ~k} 
k~Z,k>K 

"= U (x  q-k--~ (4.15) 
k~Z, lkl>K 

Notice that dist(x, SK(x))> K - 1 .  Furthermore, the Lebesgue measure of 
SK(x), 

ISK(x)I=4 ~'. ~k (4.16) 
k>K 

is independent of x, and goes to zero with K going to infinity, because Z ~k 
is convergent. 
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Recall the definition of the pair correlation function in the canonical 
ensemble: 

f u , e-PU~)~ dx~ �9 �9 �9 dx N 
P A , N ( X I , X 2 ) = N ( N - - 1 ) X A ( X 1 )  . "  - ' ~ ~  . . . . .  (4.17) XA(X~)JA JA~e PvI~)N d(x)N 

[cf. Eq. (2.1)]. p,~.N(X~, X2) is the (unnormalized) probability density for 
any two particles to have positions xt ,  x2 irrespective of the positions of 
the remaining particles. 

Below, #A  denotes the number of points in the finite set A. 

T h e o r e m  3. Let A be an interval of length L, p = N / L < ~ I ,  and 
f l>fl , .  There exists a 6 > 0  and a function K(N),  K ( N ) ~  oo as N-* oo, 
such that for N sufficiently large 

max m a x  PA.N(XI,X,_)>I~p/ISKIml (4.18) 
xl x2ESKINI{XI) 

Furthermore, for any i, 

PA.JV( # {J: [.X'j -- X~[ ..~ integer} > K(N) )  >~ 6 (4.19) 

This theorem shows the existence of long-range correlations. As 
L, N ~  ~ ,  dist(x, SKim(x))---, ~ and ISKcN~I--' 0; thus the pair correlation 
function develops increasing maxima at longer and longer integer distances. 
In the absence of ordering pa.N(x l, x2) would asymptotically factorize to 
PA.N(XI)PA,  N(X2) a s  Ixz-x,I tends to infinity, and none of the factors 
would diverge: so pA.N(X~, XZ) would remain uniformly bounded. 

The theorem remains valid for periodic boundary condition (with 
suitable modification of the interaction); in this case the maximum over Xl 
can be dropped. 

Proof. Suppose we can prove that 

Then 

P,,.N( {x,} ~=2 n SK, u)(x, ) 4= ~ )  >1 fi 

3 < P A,N( {x,} ~=2c~SK,,v,(X,) # ~J) 

=P,,.N {x~eSK~N~(X,) 
i 2 

N 

<~ Z P,,.N(xieSK~u~(X~)) 
i=2  

= ( N -  1 ) PA,N(X,_ ~ SK~m(Xl )) 

(4.20) 
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JA dx, Jsx, N,,_,-,)dx2 JA dx3"" "~., dx~v exp --flU(X)N 

= ( N - -  l) ~A dX ' ... L, d x s e x p _ f l U ( x ) s  

=~ f ., dx, f~.,N,,..,, dx2 p ..u(x,. x2) 

~< ISK~ml max max P,I.N(Xl, X2) 
p XI X2 ~ SKINI(XI ) 

(4.21) 

which is just what was claimed. 
To prove Eqs. (4.20) and (4.19), we need four lemmas. 

L e m m a  1. Let K<  1 - f l , / f l .  Then 

P A,N( U(X)N < xEt,(N)) >1 1 -- e^, (4.22) 

where es  goes to 0 as N increases. 

Proof. We have 

<~ ( L N/N! ) e-D'~, (N) 
PA.N( U(X)N>~ xEj,(N)) O~UNe_PF.,(N ) < ep(I - .-)EI, I N) (4.23) 

To get the first inequality, in the denominator  we retained only the con- 
figurations (4.2). For  the second inequality we used Stirling's formula 
[N!>(N/e )N] .  From (4.23) the result follows via Eqs. (1.2), (1.3) and 
(4.4), with an e u going to zero faster than any exponential [ l o g e s =  
O(Es,(N))]. I 

Let e, , (N)= IEs,(N)I/N and 

w i ( x ) s =  -- ~ ~0(xj--xi) (4.24) 
j r  

which is minus the potential energy of the ith particle in the configuration 
(X)N. For any real II let 

M,,(x) N = # { i: Wi(X)N > qe,,(N) } (4.25) 

If r /< 2 and N is large enough, this number may not be zero. To see this, 
notice first that Eq. (1.3) implies 

f ln N 

et,(N) ~ ~ NI-J,  

if it = 1 

if it < 1 
(4.26) 
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On the other hand, for It >/0 

N/2 (2  In N if /~ = 1 

Wi(X)N<~2 E n - " ~  2" Nl_,, if /~<1 
,,=l 1~1 --I t  

(4.27) 

and the inequality saturates (for the particles in the middle) in ground 
states. Comparing Eqs. (4.26) and (4.27), we see that 

m a x  Wi(X)N ~ 2e~,(N) if ~ = 0, 1 (4.28) 

and 

maxw~(x)g>2et,(N) if 0 < i t <  1 (4.29) 

(because 2 - I t  >/2 ~ -"  in this interval). 
If/~ <0, 

Ll- , ,  ( L _ N ) I - , ,  n- l+ , ,  
wi(x),v<~ ~. n - " ~  <~" N l-'' (4.30) 

L--N<~n<~L 1 - - I  l 

and in any ground state (x~ for the particles on the ends of the chain 

N 

wi(x~ ~ n - " ~  ( 2 - / t )  e,,(N) > 2e,,(N) (4.31) 
I t =  1 

L e m m a  2. Let K < 1 and q < 2K. For N sufficiently large, 

2x - 11 N U(x )N<xE, , (N)  implies M,~(X)N > 
g,, -- q 

were 

I 3 if l t=l  
gt,= 2(2 - i t )  if 0~<It<l  

( p - I  +t'(2-1l) if I t < 0  

(4.32) 

Proof. Comparing Eq. (4.26) with Eqs. (4.27) and (4.30), we find 
that for every/L ~< 1 and N large enough, 

wi(x)N <~ gl, e,,(N) (4.33) 

822/82/5-6-23 
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uniformly in (x)N. Therefore 

N 

2~: IE,,(N)I < 2  IU(x)NI----- Y'. wAx)N 
i = 1  

<~ (N- -  M,(X)N) rle~,(N) + gt, M,7(X),v ej,(N) 

o r  

2 x N  < Nq + ( g~, - 11) M,,(x)N 

which proves the assertion. | 

From the above two lemmas one obtains 

(4.34) 

(4.35) 

P ( ~ i e A  [ #{J :  ~ j e A }  = k ) = k / N  

P(r I #{J :  { j e A }  >~k} >~k/N 

From the last inequality one finds for any i 

k 
P(~,eA) >~vP( # {j: ~jeA} >~k) 

In the present problem, the event ~ieA corresponds 
and we get for any i 

P A.N(Wi(X) N > qei,(N)) >12~" - q 
g~, -- tl 

Dc - tl 
gs, -- tl 

which holds for any x < 1 - f l , / f l  and 11 <2x.  

(4.37) 

(4.38) 

(4.39) 

to wi(x),v > qei,(N) 

P A ,v(M, , (x)N > 2 x - t I N )  
�9 g l '  - -  q 

( 1 -- eu) (4.40) 

and 

i- N (436  
' g p  - -  tl 

i f •<  1 --flt/fl  and r/< 2Jc. 
The proof of the following lemma is left to the reader. 

L e m m a  3. Let ~, ..... ~Jv be random variables from a probability 
space (D, o~ p) to a measurable space (E2', ~-') such that their joint 
probability distribution is permutation invariant. Then for any A ~ i f '  and 
any / 
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Lemma 4. For r /<2  and N sufficiently large, w+(x),v>qe~,(N) 
implies 

{Xj}j~i f~aKtN)(Xi)~ ~ a n d  # { j :  Ixj--x,l ~integer} >K(N)  

where 

K ( N )  = 

1 Nq/2 if # = 1 

1 (2-,,0")'/<' -,o 
\ 2 - t U  N if 0 ~<lL < 1 

p -  p ' - "  2--/~J N if # < 0  

(4.41) 

Proof. We have 

w~(x)~v = ~ # {/: I x j -  x+l ~ n} n - "  (4.42) 
n~> I 

Let k = # {j: I x / -  x,] ~ integer}. Then 

2 Y' n-+' if 0 ~<IL ~< 1 
r/et,(N) < wi(x)N <~ l _<,, ~< ~-/2 (4.43) 

n-~' if # < 0 
L--k<~n<~L 

Comparing the asymptotic forms (4.26), (4.27), and (4.30) of the left and 
right ends of the above inequalities, we obtain that either k >  2K(N) or 
k ~ 2K(N), so in both cases k > K ( N )  for N large. This implies that the 
largest approximate integer distance between x; and one of xj, j ~  i, 
exceeds K(N) ,  as claimed. I 

To finish the proof, choose r/< 2(1-f l , / f l )  first; this determines K ( N )  
through Eq. (4.41). Let then 

2x = 1 -- fl,/fl + i//2 (4.44) 

which satisfies the inequalities q <2x  < 2(1-fl , /f l) .  Finally, choose N so 
large that the above lemmas hold and eu < 1/2. Then 

P {x,} N i= 2 ('~ SK{N)(XI) ~ ~ )  ~ P A.N(WI(X)N > r/e~,(N)) 

1 - / L / P  - , i /2  
>~ - ~ (4.45) 

2(gt,-~I) 
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The first inequality follows from the last lemma, the second is the same as 
(4.40). As a result, we obtained (4.20). The left member of the first 
inequality can be replaced by the left member of (4.19), which proves the 
second half of the theorem. II 

Let us summarize what we have obtained for the one-dimensional 
model of crystallization. 

Proposition 3. The one-dimensional interaction defined through 
Eqs. (1.1) and (1.2) satisfies condition (C) for p = 1 if f l<  �89  and for 
p <  1 if f l < � 8 9  In c - ' .  In this temperature range the free energy per 
particle and the pressure remain finite in the thermodynamic limit, the 
pressure depends analytically on z in D/j, and the results of Theorem 1 on 
the correlation functions are valid. 

Together with Proposition 2 and Theorem 3, this result implies that 
there occurs at least one phase transition at some fl in the interval 

�89 if p = l  

and 

�89  -~ if p < l  
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